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Note 

A Counterexample of the Use of Energy 
as a Measure of Computational Accuracy 

When solving a conservative dynamical system numerically, it is a common practice 
to equate accuracy of the energy of the numerical solution with the accuracy of the 
numerical solution itself. Our objective in this note is to produce a counterexample 
to such thinking. 

Consider, then, the following elementary problem posed, but not solved, in the 
Feynman lectures [ 11. In the XY plane, a particle of unit mass is positioned at 
(0.5,O.O) and has an initial velocity of (0.0, 1.63). Its trajectory is to be determined 
if it is acted upon by a central, attractive force F whose magnitude F satisfies 

F= l/r’. (1) 

The resulting conservative motion can be determined exactly by the methods of 
classical mechanics [4]. The motion is an ellipse whose major axis has length 2a 
and minor axis has length 2b. One focus of the ellipse is at the origin, and one finds 

10000 
a=13431’ 

the constant energy E of the system is 

E= -;= -0.67155, 

the period z of the motion is 

and parametric equations of the motion are 

6569 10000 

(2) 

(3) 

(4) 

t 2 0. (5) 

Note that the quantities a, b, E, z given in (2b(4) are exact, as is the solution by (5). 
The graph of (5) is the ellipse shown in Fig. 1. 
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FIG. 1. The analytical orbit. 

Next, let us formulate the problem dynamically and then solve it numerically. 
The differential equations of motion are 

d=x 1 X d=y 1 Y _ --. 
z- x=+ y= (g+ y=)l’2; 

----. 
dt= - x2 + y= (x2 + y=)“= (6) 

and the initial conditions are 
x(0) = 0.5, y(0) = 0.0, u, (0) = 0.0, 

The central potential qS(r) associated with (1) is 

4(r) = - l/r. 

u,(O) = 1.63. (7) 

(8) 

To proceed numerically, we first rewrite (6) as an equivalent first-order system: 

dx 
-& = vx (9) 

4 
z=vY 

dvx 1 X _ --. 
-iii--- x2 + y= (x2 + yy 

dVY 1 Y _ . . ..--. 
dt - x2 + y= (x2 + yy 

(10) 

(11) 

(12) 
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which, in the usual numerical notation, is approximated by 

xk+l -xk vk+ 1,x + vk,.x 

At = 2 

Yk+l-yk vk+l,y+vk,y 

At = 2 

vk+l,x-vk,x 1 
At =- (4 + YV2(4+ 1 + v:, lP2 

Xk+l+Xk 

. ctx:+ Y:P2+ (x:+1 + Y:+l)1’21 

Vkfl,y-vk,y 1 

At =- (~:+Y~,“2(X:+l+Yf+lP2 

yk+l +Yk 

~c~~:+Y:~“2+~~:+,+Y~+l~1’21’ 

(13) 

(14) 

(15) 

Note that as At j 0, (13k( 16) converge to their counterparts in (9)-(12). 
For given At and k = 0, 1,2, . . . . system (13)-( 16) is an implicit, nonlinear system 

of four algebraic equations for the four unknowns xk+ 1, yk+ , , ok + I,xr ok+ l,y in 
terms of the four knowns xk, yk, vk,X, vk, Y. For At = 0.5, the system was solved in 

f 

FIG. 2. The first numerical orbit. 
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FIG. 3. The first 100 numerical orbits. 

double precision on a VAX 8700 for each k by Newton’s method with a con- 
vergence tolerance E = lo- . lo The first orbit of the numerical solution is shown in 
Fig. 2, superimposed on the exact solution. The numerical solutions, up to and 
including k = 1000, consisted of more than 100 orbits, all of which have been plot- 
ted in Fig. 3, again superimposed on the exact solution. At each time t,, the energy 
Ek was Ek = -0.67155, which coincides with the exact energy E given in (3). The 
results shown in Fig. 2 and 3 then confirm that accuracy in Ek is not equivalent to 
accuracy of the numerical calculations. In addition, Fig. 3 is consistent with the 
continuous result which states that for constant negative energy, orbits are bound 
by an annular region [3]. In Fig. 3, the annular region is 0.5 < r < a. 

Note that the fixed time step in the above example was chosen to ensure a 
relative large truncation error, while the fixed convergence tolerance was chosen to 
ensure a minimum roundoff error. Indeed, one can produce more striking effects 
simply by increasing At and calculating as above. The reason is that the energy Ek 
defined by (21)-(24) is independent of At and is always the same as E. This result 
follows because it is a special case of a more general energy invariance theorem [2]. 
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